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Scope of article
In Part 1 of this review the following principles of
causation were considered: time order, specification of the
study base, specificity, bias due to random
misclassification, and bias due to systematic
misclassification.1 Part 2 continued with confounding,
effect modification, and strength of association.2 Part 3
concludes the consideration of causal principles and will
discuss:
3a: Statistical stability
3b: Dose- and duration-response effects
3c: Internal consistency
3d: External consistency
3e: Analogy
3f: Biological plausibility.

3a: Statistical stability
The focus in this review is on exposed and non-exposed,
and diseased and non-diseased, individuals (‘categorical
variables’). The statistical assessment of measurements
made on a continuous scale (‘continuous variables’) (e.g.
mean height or weight) is not considered.

Confidence in causality is strengthened if an
association is stable: that is, if the numbers (the numerators
and denominators of the compared rates) are sufficient to
rule out chance (‘sampling error’) with reasonable
confidence. By convention, ‘confidence’ is estimated by
setting a confidence interval (CI) (‘confidence limits’)
around the relative risk (RR) estimate (‘point estimate’).
CIs are usually set at 95% or, if one wants to be more
rigorous, at 99%. A CI that excludes 1.0 is taken to suggest
that it is unlikely that the observed association is due to
chance. In addition, if the CI is relatively narrow, the extent
to which the RR might vary if the same study were to be
repeated is correspondingly reduced.

An alternative to estimation of the RR and its CI is to
estimate statistical significance. By convention, an
association is deemed to be significant if the probability
that it could occur by chance is <5% or, if one wants to be
especially rigorous, <1% (technically, ‘p<0.05’ or
‘p<0.01’). RRs and their CIs, and p values, are derived
from the same calculations.

A drawback to p values is that they do not provide
direct insight into the magnitude of the association or into
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the extent that a RR point estimate may vary by chance if
the same study were to be repeated. For this reason,
description of an association in terms of the RR and its CI
is usually preferable since it is more informative. However,
when all that is at issue is whether or not any given
observation is due to chance, it may be more convenient to
give p values, for example, in describing trends (e.g. dose-
or duration-response effects: see Part 3b below).

Throughout the 20th century, great advances have been
made in statistical methods, among them the ability to
control for multiple potentially confounding factors
simultaneously by means of multivariate analysis. Indeed,
it is virtually impossible to conceive of modern
epidemiology without the benefit of those advances. Again,
however, the same advances have at the same time
engendered certain drawbacks. One important drawback is
a lack of transparency if the data are presented in a way that
makes it impossible for an independent observer to check
the evidence for himself (‘black box statistics’). That
drawback can be avoided or minimised if the salient
evidence from a multivariate analysis is also presented in
simple tabular form. Unfortunately this is not always done.
The late Bradford Hill once remarked that quantitative
findings from any study should not be accepted at face
value unless the main results can be checked on the back of
an envelope.

When a study is planned it is customary to project the
number of people who will need to be enrolled in order to
document a hypothesised association, and ‘reject the null
hypothesis (RR = 1.0)’. If, for example, we wish to test the
hypothesis that oral contraceptives increase the risk of
venous thromboembolism (VTE) by three-fold, we may
estimate the required ‘sample size’ (‘power’) based on the
following assumptions:
1. That the hypothesised RR is 3.0.
2. That if the RR estimate is 3.0, the 95% CI will exclude a
value of 1.0.
3. That we wish to be 80% confident that we will not, by
chance, ‘miss’ a RR estimate of 3.0.
Items 2 and 3 are conventionally the stipulations
(‘parameters’) that are set in estimating statistical power.
Item 2 is to ensure that if the same study were to be
repeated 100 times, a RR of 3.0, if not present, would only
mistakenly be identified less than five times (‘alpha error’).
Item 3 is to ensure that if there is indeed a RR of 3.0 it
would correctly be identified in at least 80 repetitions of the
study (‘beta error’).

Several factors that need not be considered here
determine statistical power. What is relevant is that in
follow-up studies important determinants include the
projected numbers of cases among exposed and non-
exposed persons, or in case-control studies the numbers of
exposed cases and controls. In both follow-up and case-
control studies the single most important determinant of
power is usually the number of exposed cases (because that
number is usually the smallest).
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Sometimes the hypothesis in a projected study is that
there is no association (RR = 1.0). In that case it is
customary to set the upper 95% confidence limit one
wishes to exclude at 2.0 (but occasionally at 1.5) and power
is calculated accordingly. As a practical matter, the
exclusion of a RR of much less than 2.0 usually calls for
massive numbers and is seldom feasible.

A further consideration that bears on the estimation of
statistical power is the interrelationship between the
strength of any given association (see Part 2c: strength of
association2) and its statistical stability: the greater the
magnitude of the RR the smaller is the number of
exposures and outcomes needed to document it. For high
RR estimates (say ≥5.0) small numbers may be sufficient to
set confidence limits that exclude 1.0. However, estimates
based on small numbers, even when significant, are not
robust, they have extremely wide CIs, and they are
uniquely susceptible to the vagaries of misclassification,
whether random (see Part 1d: bias due to random
misclassification1) or systematic.

Assume, for example, that in a hypothetical case-control
study there are 30 cases, of which three (10%) are exposed,
that the RR is 5.0, and that the 95% CI is 1.1–12.8. If only
a single case has misreported his or her exposure, and in fact
was not exposed, the association would no longer be
statistically significant. In this instance the misclassification
necessarily affects one (33%) of the three exposed cases. By
contrast, in a much larger study the confidence limits would
be narrower, and any misclassification, if present, has the
‘opportunity’ to be much less than 33%, and to affect a
smaller proportion of the cases.

The possibility of confounding (see Part 2a:
confounding2) further limits the interpretability of small
numbers. Assume, in the present example, that it is
necessary to adjust simultaneously for the effects of age,
sex, years of education, and smoking. The number of
factors exceeds the number of exposed persons, and
multivariate adjustment (‘black box adjustment’), if
attempted, becomes meaningless: ‘the model (one hopes)
fails to converge’. By contrast, if there are, say, 30 exposed
individuals, the data are likely to be sufficiently robust in
statistical terms to accomplish meaningful multivariate
adjustment for confounding.

A further limitation to small numbers is that it is
impossible to evaluate whether the data are internally
consistent (see Part 3c: internal consistency). Thus, in the
above example it would be impossible to determine
whether, given only three exposed persons, the association
is present among men and women, smokers and non-
smokers, rich and poor, and so on.

It is for these reasons that associations based on small
numbers, even when statistically significant, are considered
fragile. Such associations can only be considered valid
when there are strong grounds to assume that there is
virtually no error. Even then the fragility intrinsic to small
numbers necessarily limits their interpretability. As a rough
rule of thumb, concern about fragility only recedes when
the numbers of exposed cases and non-cases each exceed
10 or, preferably, 20 or 30 individuals.

At this point it is necessary to draw attention to a
common fallacy, which is to interpret ‘statistically
significant’ associations as ‘causal’. As already pointed out,
they may not be causal if the data are biased or confounded.
Statistical methods are essential to good epidemiological
practice. However, while they enable us to estimate the
magnitude of any given association and the confidence
with which chance can be excluded, and to adjust for
confounding, they do not eliminate bias or residual
confounding, if present.

Another important issue is the interpretability of
significant associations derived from multiple comparisons
conducted within a single set of data (usually a large
database). Probability theory dictates that if any body of
data is sampled thousands of times, as is sometimes done,
‘significant’ associations will inevitably arise by chance, in
much the same way as exceptional hands are sometimes
dealt in a game of cards.

For these reasons, any association identified post hoc
(‘a posteriori’), either in the course of multiple
comparisons, or sometimes serendipitously (‘hypothesis
generation’), must be regarded as tentative, and in need of
independent confirmation (see Part 3d: external
consistency). If the association is ‘real’ it should be
confirmed; if it is an artefact it should not be (‘regression
to the mean’). Conversely, any hypothesis proposed in
advance (‘a priori’), and then confirmed in a study
specifically designed to test it, carries much greater weight
– although any study, no matter how good, always benefits
from independent confirmation.
Example: Fragile data and failure to recruit targeted
cases and controls. Appetite suppressants containing
phenylpropanolamine and the risk of haemorrhagic
stroke. In a case-control study, based on six exposed cases
of haemorrhagic stroke and one control exposed to appetite
suppressants containing phenylpropanolamine, the RR was
16.58 (95% CI 1.51–182.21).3 Given such exceptionally
fragile data, no inferences were justified. Only 41% of the
targeted cases were enrolled, and those who were not may
well have differed in their use of appetite suppressants. The
controls were recruited using a technique known
(unfortunately) as ‘random digit dialling’ in which
telephone calls are made to determine whether there is a
potentially eligible control in the household. The
proportion of targeted controls not enrolled (for reasons
such as telephone not answered, call forwarding, non-
cooperation) could not be determined, but it was
undoubtedly high. Both because of fragility and failure to
enrol 59% of the targeted cases, and an unknown
proportion of the targeted controls, this was an
uninformative study.
Example: A spuriously elevated relative risk identified
in multiple comparisons. Reserpine and breast cancer.
In the course of multiple comparisons conducted within a
large database, based on a comparison of 150 cases of
breast cancer and 600 controls, the RR of breast cancer for
the use of reserpine (an antihypertensive drug) was 3.5
(p = 0.00007).4 Several further studies failed to confirm the
association.5 Finally, in a study that compared 1881 cases
of breast cancer and 1523 controls, the RR was 0.8 (95%
CI 0.5–1.1).6 The methods used in the hypothesis-
generating and final study were essentially the same, and
the initial RR estimate of 3.5 was an artefact that arose by
chance in the course of multiple comparisons.

3b: Dose-response and duration-response
effects
As a general rule, confidence in causality is strengthened
when there is evidence of a dose- or duration-response
relationship, and when there are sound clinical or
biological grounds to anticipate that there should be such a
relationship. The steeper the slope (‘gradient’; ‘linear
gradient’; ‘monotonic gradient’) of the response curve, the
more plausible is it that it may be causal. However,
evidence of a dose- or duration-response effect by no
means excludes the possibility that it may be due to bias
(e.g. if, in a case-control study, the cases tend to
overestimate the duration of exposure) or confounding (e.g.
if the most severely ill patients take the highest doses).
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Causation can also occur in the absence of a dose- or
duration-response effect (e.g. allergy to beestings), and
sometimes the RR may even decline with increasing
duration of exposure, as already illustrated in the example
of the modifying effect of the duration of oral contraceptive
use on the risk of VTE.7–9

Example: See below.

3c: Internal consistency (‘coherence’)
In any given study, confidence in causality is
strengthened if an association is consistently evident
(‘coherent’) within subgroups in which it might
reasonably be expected to be. For example, if smoking
causes lung cancer in men, it ought also to do so in
women, as well as in those who completed primary
school, high school, university, and so on. If internal
consistency is not demonstrable, confidence in causality
is weakened, unless an effect is demonstrably confined to
a subgroup (see Part 2b: effect modification2).

Ideally, in order to evaluate internal consistency,
numbers should be statistically stable not only for
estimation of the overall association, but also for relevant
subgroups. In practice that ideal may not always be
realistic. However, as pointed out above, if numbers are
very small, it is not possible to show any degree of
consistency at all, and confidence in causality is
correspondingly weakened.
Example: See below.

3d: External consistency
Confidence in causality is strengthened when evidence
derived from different epidemiological studies, preferably
based on different research strategies (e.g. follow-up and
case-control studies) consistently converges on the same
association. A causal inference may be further strengthened
if the magnitude of the observed association is broadly
consistent among the studies. Ideally, no association should
be accepted as causal until it has been repeatedly and
independently confirmed.

3e: Analogy
Analogy refers to indirect information that may support
causality, and it is a relatively weak causal criterion. The
evidence that oral contraceptives cause VTE and
myocardial infarction (in smokers), for example, might be
invoked as evidence to support the claim that they also
cause strokes, but the reasoning is weak.

3f: Biological plausibility
An association identified in epidemiological research gains
in credibility when other lines of scientific evidence (e.g.
animal experiments; laboratory tests) suggest that it is
biologically plausible. A drawback, however, is that
sometimes the experimental evidence may not be
applicable to human beings. In addition, different effects
are sometimes evident in different animal species or in
different experiments. Quite commonly there is copious,
and contradictory, experimental evidence for or against
causality, leaving the biased epidemiologist free to quote
whatever evidence fits his or her preconceptions.
Sometimes it is even the case that the epidemiological
evidence is correct, and the experimental evidence is wrong
[e.g. thalidomide and phocomelia: the association was not
demonstrated in animal experiments until the ‘right’ animal
(the rabbit) was selected].10

Despite these limitations to the criterion of biological
plausibility, in principle it is only when there is full
accordance in the totality of the evidence, and when the
biological mechanisms are fully understood, that causation

can be said to be established beyond any reasonable doubt
– an ideal that is seldom, if ever, fully achieved. Short of
that ideal, solid biological evidence strongly supports
epidemiological evidence of causality.
Example: Proper specification of time order, strong
associations, statistical stability, duration- and dose-
response effects, internal consistency, external
consistency, and biological plausibility. Conjugated
estrogen use and uterine cancer. In 1975 two studies,
published back-to-back, reported an increased risk of
endometrial cancer among users of supplemental
estrogens.11,12 The findings were criticised on the
grounds that estrogens could commonly have
precipitated endometrial cancer that would otherwise
have remained ‘clinically silent’.13 That criticism was
rebutted in a case-control study that demonstrated that
the risk of endometrial cancer was increased among
women who had last used estrogens as much as ≥5 years
previously.14 The overall associations for durations of ≥5
years of use were strong (>3.0), both among current and
past users. Duration-response effects (p<0.01) were
evident. The findings were consistent for early and
advanced cancer. Other studies have confirmed the
overall association, and have demonstrated dose-
response effects.15 In multiple studies, experimental
evidence has shown that estrogens induce endometrial
hyperplasia, an established precursor of neoplasia.16 It is
established that supplemental estrogens cause
endometrial cancer.

Conclusions
In this series of articles, many of the examples selected to
illustrate various causal principles have been fallacies.
Fallacies are by no means unique to epidemiology: they
burden all disciplines. So it is worth re-emphasising that
epidemiology has to its credit a great many non-fallacious
and major achievements in causal research, and that there
will many more to come. Here, I hope my interpretation of
causal principles for clinicians will assist them in
distinguishing some of the wheat from the chaff.
Unfortunately, as illustrated by several examples in this
series, there is now no shortage of chaff.

The central limitation to causal thinking in modern
epidemiology is the overarching belief that technical
advances now enable us to interpret the marginal evidence
intrinsic to small RRs as causal, whereas previously we
were unable to do so. Despite the lack of evidence to
support that belief, and despite the need for scepticism, that
belief has come more and more to be sustained by
dependence on ‘black box’ statistics, large or massive
studies, meta-analyses, and sensitivity analyses. If they are
to justify themselves, some epidemiologists need to
convince themselves that at least some of the small
associations they identify can be interpreted, and that they
can be interpreted as causal. An analogous belief is that
blinded, long-duration, randomised trials that cease to be
blinded or randomised can nevertheless be analysed and
interpreted as if they are, and that they can document small
risks as causal: they can only do so when they do not, in
effect, become observational studies. Since, for common
diseases, small RR increments can translate into large
absolute risks, many epidemiologists are simply unable to
accept that causal judgments based on such small
increments must usually remain uncertain.

Not only has the belief in the interpretability of small
risks become dominant, but it has become politically
entrenched. The epidemiological sections of the
monographs on the causes of cancer published by the
International Agency for Research on Cancer, for example,
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now consist almost entirely of meta-analyses of
publications from the world literature. Similarly, the ex-
cathedra prescriptive activities (‘systematic reviews’;
‘Cochrane reviews’) of ‘evidence-based medicine’ and
‘Cochrane centres’ (see the website home page:
http://www.Cochrane.org) are largely based on the belief
that there is a hierarchy of valid evidence in which
controlled trials most closely approximate ‘the truth’,
followed by cohort studies, followed by case-control studies
(all or some of which can be melded in meta-analyses),
followed by the rest, with anecdotal evidence at the bottom
of the heap.17 There is no hierarchy: each of the research
strategies described here have strengths and weaknesses,
and it is the best evidence, however derived, that must be
given the greatest weight in deciding on causality.

The late Alvan Feinstein once remarked that if some
insuperable scientific obstacle interferes with one’s
preconceptions, the temptation to ignore it and pretend it does
not exist may be irresistible. Can this state of affairs be
remedied? If it is to be, an essential requirement is that
experienced clinical insight must be restored to the leadership
in causal research. The associations at issue are usually
subtle, and clinical judgment is essential if they are to be
properly interpreted. In the absence of clinical judgment,
epidemiology runs the risk of becoming stupid epidemiology.

Elsewhere I have stated that: “If we can move away from
the paradigm of the randomised controlled trial as the most
superior methodology under all circumstances, and if we can
learn to accept that some questions cannot be answered, we
also need to reassert the ascendancy of clinical medicine, in
its broadest sense, in causal thinking within
epidemiology”.17 That need has become urgent, and if this
article helps to fulfil it then it will have served its purpose.
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NEWS ROUNDUP

UN wall charts
The United Nations (UN) has produced two new
wall charts – World Contraceptive Use 2007 and
World Abortion Policies 2007 – that might be of
interest to health professionals. The website also
includes a number of very useful articles on
sexual and reproductive health. Visit the UN
website for further information.

Source: www.unpopulation.org

HPV immunisation programme in
Scotland
From September 2008 to June 2009, around
901000 girls in Scotland will receive three separate
injections over a 6-month period as part of
Scotland’s Human Papilloma Virus (HPV)
National Immunisation Programme to help
protect teenage girls from the future risk of
cervical cancer. Over 15 000 information packs

are being issued by Health Protection Scotland
(HPS) to a range of health professionals across
Scotland from June 2008. The pack, which has
been developed by HPS and NHS Health Scotland
to help health professionals implement and deliver
the immunisation programme from 1 September
this year, will include examples of the campaign’s
marketing materials, Q&As for parents and carers
and their daughters, and detailed medical
information including a fact sheet and a copy of
the Green Book Chapter on HPV.

Source: www.hps.scot.nhs.uk

Pro-life’ pharmacies and birth
control
Previously in News Roundup it was reported that
certain UK pharmacists were unwilling to sell
emergency contraception.1 News from the USA
reveals that a pharmacy that opened in the state of

Virginia this summer will not sell condoms, birth
control pills or emergency contraception. R Alta
Charo, a University of Wisconsin lawyer and
bioethicist, told the Washington Post: “We may
find ourselves with whole regions of the country
where virtually every pharmacy follows these
limiting, discriminatory policies and women are
unable to access legal, physician-prescribed
medications. We’re talking about creating a
separate universe of pharmacies that puts women
at a disadvantage.”
Reference
1 Pharmacist refuses to sell emergency contraception

[News Roundup]. J Fam Plan Reprod Health Care
2005; 31: 324.

Source: http://www.washingtonpost.com/wp-dyn/content/article/
2008/06/15/AR2008061502180_pf.html

Reviewed by Henrietta Hughes, MRCGP, DFSRH

General Practitioner, London, UK
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